Acnode - definitie. Wat is Acnode
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Acnode - definitie

ISOLATED POINT IN THE SOLUTION SET OF A POLYNOMIAL EQUATION IN TWO REAL VARIABLES. EQUIVALENT TERMS ARE "ISOLATED POINT OR HERMIT POINT"

Acnode         
·noun An isolated point not upon a curve, but whose coordinates satisfy the equation of the curve so that it is considered as belonging to the curve.

Wikipedia

Acnode

An acnode is an isolated point in the solution set of a polynomial equation in two real variables. Equivalent terms are isolated point and hermit point.

For example the equation

f ( x , y ) = y 2 + x 2 x 3 = 0 {\displaystyle f(x,y)=y^{2}+x^{2}-x^{3}=0}

has an acnode at the origin, because it is equivalent to

y 2 = x 2 ( x 1 ) {\displaystyle y^{2}=x^{2}(x-1)}

and x 2 ( x 1 ) {\displaystyle x^{2}(x-1)} is non-negative only when x {\displaystyle x} ≥ 1 or x = 0 {\displaystyle x=0} . Thus, over the real numbers the equation has no solutions for x < 1 {\displaystyle x<1} except for (0, 0).

In contrast, over the complex numbers the origin is not isolated since square roots of negative real numbers exist. In fact, the complex solution set of a polynomial equation in two complex variables can never have an isolated point.

An acnode is a critical point, or singularity, of the defining polynomial function, in the sense that both partial derivatives f x {\displaystyle \partial f \over \partial x} and f y {\displaystyle \partial f \over \partial y} vanish. Further the Hessian matrix of second derivatives will be positive definite or negative definite, since the function must have a local minimum or a local maximum at the singularity.